Important Instructions and Notices to the User:
Modification of this device without the express authorization of FLIR Systems, Inc., may void the user’s authority under the FCC Rules to operate this device.

Note 1: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. Shielded cables must be used to connect this device to other devices.

Note 2: If ferrites are supplied with this equipment, the equipment was tested for compliance with the FCC limits for a Class A digital device using power cables with the ferrites installed. When connecting one or two power cables to the equipment, the supplied ferrites must be used with this equipment.

Industry Canada Notice:
This Class A digital apparatus complies with Canadian ICES-003.

Avis d’Industrie Canada:
Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

Proper Disposal of Electrical and Electronic Equipment (EEE)

The European Union (EU) has enacted Waste Electrical and Electronic Equipment Directive 2002/96/EC (WEEE), which aims to prevent EEE waste from arising; to encourage reuse, recycling, and recovery of EEE waste; and to promote environmental responsibility.

In accordance with these regulations, all EEE products labeled with the crossed out wheeled bin either on the product itself or in the product literature must not be disposed of in regular rubbish bins, mixed with regular household or other commercial waste, or by other regular municipal waste collection means. Instead, and in order to prevent possible harm to the environment or human health, all EEE products (including any cables that came with the product) should be responsibly discarded or recycled.

To identify a responsible disposal method nearby, please contact a local waste collection or recycling service, the original place of purchase or product supplier, or the responsible government authority in the area. Business users should contact their supplier or refer to their purchase contract.
Table of Contents

PT-Series HD Camera Installation

1.1 Camera Overview ... 5
1.2 Installation Overview .. 5
 1.2.1 Camera Connection Options .. 5
 1.2.2 Serial Communications Overview ... 6
 1.2.3 Supplied Components ... 6
 1.2.4 Required Components .. 6
1.3 Location Considerations ... 7
1.4 Bench Testing ... 7
1.5 Camera Mounting .. 7
 1.5.1 Galvanic Isolation ... 7
 1.5.2 Earth Ground Connection ... 8
 1.5.3 Installation of Camera and Galvanic Isolation Kit .. 9
1.6 Camera Connections .. 11
 1.6.1 Remove the Back Cover .. 11
 1.6.2 Connecting power ... 12
 1.6.3 Video Connections .. 13
 1.6.4 Ethernet Connection ... 13
 1.6.5 Serial Connection ... 13
 1.6.6 Serial Communications Settings - Hardware DIP Switches .. 14
 1.6.7 Cable Gland Sealing .. 16
1.7 PT-Series HD Camera Specifications ... 17

Basic Operation and Configuration

2.1 IP Camera, ONVIF Profile S Compliant .. 19
 2.1.1 Serial and/or IP Communications .. 19
 2.1.2 Server Configuration .. 19
2.2 Camera Bench Test .. 19
 2.2.1 Set IP Address using the FLIR Discovery Network Assistant (DNA) ... 20
2.3 Log into the Camera Web Page .. 21
 2.3.1 Live Video Page ... 22
 2.3.2 Camera Control and Status .. 23
 2.3.3 Web Control Panel .. 23
2.4 Camera Configuration ... 25
 2.4.1 Expert and Admin Accounts ... 25
 2.4.2 Setup Menu ... 26
 2.4.3 Maintenance Menu .. 32
2.5 Thermal Imaging Overview .. 42
2.6 Troubleshooting Tips ... 43

Serial Address: Decimal To Binary Conversion

3.1 Address Conversion Table ... 45
The PT-Series HD pan/tilt thermal security camera for medium- to long-range applications can be used with traditional analog video installations or IP video networks. It incorporates a high-sensitivity thermal camera with a choice of lenses and a long-range daylight camera all within a precision pan/tilt platform. The PT-602CZ HD pairs a cooled mid-wave focal plane array (FPA) thermal detector with the daylight camera.

This manual describes the installation of the PT-Series HD cameras. If help is needed during the installation process, please refer to http://www.flir.com/security/display/?id=71083 for support. All installers and integrators are encouraged to take advantage of the training offered by FLIR; visit http://www.flir.com/training for more information.

This manual includes the following topics:

- Installation overview
- Mounting the camera and its components
- Connecting the electronics
- Bench testing the camera
- Configuration and operation of the camera
- Camera specifications

For safety, and to achieve the highest levels of performance from the camera system, follow the warnings and cautions in this manual when handling and operating the camera system.

Warning!

If mounting the camera on a pole, tower or any elevated location, use industry standard safe practices to avoid injuries.

Caution!

Except as described in this manual, do not open the camera for any reason. Disassembly of the camera (including removal of the cover) can cause permanent damage and will void the warranty.

Be careful not to leave fingerprints on the camera’s infrared optics.

The camera requires a power supply of 24 Volts nominal. Operating the camera outside of the specified input voltage range or the specified operating temperature range can cause permanent damage.

PT-Series Camera Mechanical Interface Control Document (ICD)
(FLIR Doc # 427-0075-XX-19)—available from the FLIR website, provides further details regarding mechanical dimensions and mounting for the PT-Series HD camera.

Note

This manual has basic configuration information about the camera and making configuration changes. Refer to the *Nexus IP Camera Configuration Guide* for more details.

Nexus IP Camera Configuration Guide
(FLIR Doc # 427-0030-00-28)—Available from the FLIR website, provides further details on using a web browser to configure PT-Series HD cameras.
1.1 Camera Overview

The PT-Series HD camera is both an analog and an IP camera. The video from the camera can be viewed over a traditional analog video network or it can be viewed by streaming it over an IP network using MJPEG or H.264 encoding. Analog video will require a connection to a video monitor or an analog matrix/switch. The IP video will require a connection to an Ethernet network switch and the appropriate software for viewing the video stream.

1.2 Installation Overview

The PT-Series HD camera is intended to be mounted outdoors on a medium-duty fixed pedestal mount or wall mount commonly used in the CCTV industry. Cables will exit from the back of the camera housing. The mount must support up to 45 lbs (20 KG). The camera can be controlled through either serial or IP communications. The camera operates on 21 Vac to 30 Vac or 21 Vdc to 30 Vdc. In order to access the electrical connections and install the cables, it is necessary to temporarily remove the back cover of the camera housing. Ensure the back cover is replaced in the same orientation, with the two cable glands below the central pressure equalization vent.

1.2.1 Camera Connection Options

Camera connections are made through water-tight cable gland seals on the rear of the camera. Refer to Cable Gland Sealing, pg. 16 to ensure the glands are used correctly and the connections are sealed.

Analog video will require at least one connection to a video monitor or an analog video matrix switch. In most analog installations, two video connections will be used—one for the thermal camera video, and one for the daylight camera video. The camera provides two BNC connectors for these analog video channels.

An Ethernet connection is provided for IP video streaming and for command and control communications using a web browser.

For analog installations that are not using Ethernet/IP, a serial cable (RS232 or RS422) can be connected and used for command and control communications, supporting either Pelco D or Bosch protocols. It is recommended an Ethernet cable should also be installed to allow easy remote access for camera configuration, operation, and troubleshooting.
1.2.2 Serial Communications Overview
The installer must decide if the serial communications settings will be configured via hardware (DIP switch settings) or software (default). If the camera has an Ethernet connection, then generally it is easier (and more convenient) to make configuration settings via software. Then configuration changes can be made over the network without physically accessing the camera. Also the settings can be saved to a file and backed up or restored as needed.

If the camera is configured via hardware, then configuration changes in the future may require accessing the camera on a tower or pole, dismounting it, and removing the back and so on. If the camera does not have an Ethernet connection, the DIP switches must be used to set the serial communication options.

1.2.3 Supplied Components
The PT-Series HD camera ships with these standard components:

- Multi-sensor pan/tilt camera unit
- Galvanic isolation kit (PN 4204960)
- Noise suppression ferrite
- Cable glands and spare parts kit

1.2.4 Required Components
The installer will need to supply the following items; the cable lengths are specific to the installation.

- 24 Vdc or 24 Vac power supply

Note
A single ferrite is supplied with this equipment, the equipment was tested for compliance with the FCC limits for a Class A digital device using the ferrite installed on the system power cable. When connecting one or two power cables to the equipment, the supplied ferrite must be installed with this equipment. A power installation using metal conduit does not require installing the ferrite.

- Electrical cables, for system power and heater power; 3-conductors are required for system power (one ground) and two conductors are required for heater power (no ground). The wire gauge must be determined by cable length and supply voltage. A single 5-conductor, shielded cable or two individual cables may be used. Refer to Figure 1-4 on page 11 for additional information.
- Camera grounding strap
- Coaxial RG59U video cables and a 90° BNC adapter at the camera end for analog video
- Shielded CAT6 Ethernet cable for streaming video, control, and for software updates. CAT5e Ethernet cable may be adequate in many installations except when closely installed with power cables in demanding video streaming networks.
- Serial cable for serial communications—optional
- Miscellaneous electrical hardware, camera mount (with stainless steel washers and bolts), connectors, and tools
1.3 Location Considerations

Install the camera in a location that will allow access for regular periodic cleaning (fresh water rinse), inspection of mounting integrity and mechanical soundness, and preventative maintenance. Ensure the camera and the camera mount are routinely inspected on a periodic basis.

The camera will require connections for power, communications (IP Ethernet, serial), and video (analog, IP digital).

- Ensure the 360° pan and 180° tilt exclusion zone is free of all obstructions.
- Install all cameras with an easily accessible Ethernet connection to support future software updates.
- Ensure that cable distances do not exceed the specifications and that cables adhere to all local and industry standards, codes, and best practices.

1.4 Bench Testing

Connect the power, video, serial, and Ethernet connections and confirm that the video is displayed on a monitor when the power is turned on. Confirm the camera can be controlled by moving it (pan/tilt). For configuration and basic setup information using the onboard web server, refer to Basic Operation and Configuration, pg. 19.

1.5 Camera Mounting

Caution!

Ensure that the camera base is electrically isolated and properly grounded when it is secured to its mount. Contact between the stainless steel fasteners and any bare aluminum may cause galvanic corrosion which will shorten the life of the installation and may void the camera warranty.

Galvanic isolation is critical in preventing corrosion. Proper installation of galvanic isolation pad and washers is important for long product life.

There are two critical steps related to proper galvanic isolation camera mounting:

- Installation of galvanic isolation kit
- Proper grounding (bonding) to earth ground

1.5.1 Galvanic Isolation

The Galvanic Isolation Kit (FLIR PN 4204960) is for use with all PT-Series HD cameras. The isolation plate and nylon shoulder or flat washers provide electrical isolation between the stainless steel fasteners and the aluminum camera base, and electrically isolates the complete PT-Series HD camera from the customer mount. Galvanic isolation is critical in preventing corrosion. Proper installation of galvanic isolation pad and washers is important for long product life. Refer to Installation of Camera and Galvanic Isolation Kit, pg. 9 for specific instructions.
1.5.2 Earth Ground Connection

Earth ground connection is very important to protect PT-series from surge induced failures and corrosion caused by stray current/ground loops. Attach ground wire (16 AWG or larger) to ground lug on access panel. Use the large hex nut to secure ground wire to stud on access panel. Ground stud is #8-32 thread.

Caution!

When lifting the camera use the camera body and base, not the tubes.

PT-Series HD cameras must be mounted upright on top of the mounting surface, with the base below the camera. The unit should not be hung upside down.

Figure 1-2: PT-Series HD Camera Mounting
1.5.3 Installation of Camera and Galvanic Isolation Kit

Important Safeguards and Warnings

- Installation and servicing should be done by qualified installation and service personnel only.
- Installation should be done according to all local and national electrical and mechanical codes, using only approved materials.

Warning!

Before drilling into walls or ceilings for mounting the camera, verify that areas behind these positions do not contain electrical or other utility service lines. Serious injury or death may result from failure to heed this warning.

- Once the mounting location has been selected, verify both sides of the mounting surface are accessible and free of utility service lines or other obstructions.
- Use stainless steel hardware to fasten mounts to outdoor surfaces.
- Use a thread locking compound such as Loctite 242 or equivalent with all metal to metal threaded connections.
- To prevent damage from water leakage when installing outdoors, apply sealant around the bolt holes between the mount and the mounting surface.

Caution!

Following this procedure is critical to maintaining the warranty on your PT-Series HD product. Failure to follow these instructions can potentially void the camera warranty.

Table 1-1: Kit Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation plate</td>
<td>1</td>
</tr>
<tr>
<td>M8 nylon flat washera</td>
<td>6</td>
</tr>
<tr>
<td>M8 nylon shoulder washer</td>
<td>6</td>
</tr>
<tr>
<td>M8 split washer, S.S.</td>
<td>6</td>
</tr>
<tr>
<td>M8 washer, S.S.</td>
<td>6</td>
</tr>
<tr>
<td>Tef-Gel TG .25, 3 cc syringea</td>
<td>optional</td>
</tr>
</tbody>
</table>

a Use the alternate nylon flat washers and Tef-Gel lubricant on fasteners for PT-Series HD camera bases with mounting holes that are too small to accept the shoulder washers. A syringe of Tef-Gel will be supplied in the mounting kit when the nylon flat washer is required.

Two extra pieces of each attaching part are supplied in the kit.

Step 1 Determine the correct positioning of the isolation plate (See Figure 1-3 on page 10).

Step 2 Place the isolation plate and the camera on the mounting structure aligning the bolt holes or studs.

Step 3 Install nylon shoulder washers (4x) or nylon flat washers (4x) onto camera base. If using nylon flat washers, apply a generous coat of Tef-Gel filling all gaps and voids.
Step 4 Secure the camera using 5/16” or M8 fasteners (4x) with stainless steel flat washers and split washers on top of the nylon washers.

Step 5 Ensure the camera is properly grounded. FLIR requires using a 14 AWG to 16 AWG grounding strap anchored to the ground lug on the back plate of the camera housing and then terminated to the nearest earth-grounding point.

Figure 1-3: PT-Series HD Galvanic Isolation Kit (PN 4204960)
1.6 Camera Connections

1.6.1 Remove the Back Cover

Use a 2.5 mm hex key to loosen the captive screws and remove the cover, exposing the connections at the back of the camera. There is a grounding wire connected between the case and the back cover.

![PT-Series HD Camera Connections](image)

Figure 1-4: PT-Series HD Camera Connections
1.6.2 Connecting power

The camera itself does not have an on/off switch. Generally a circuit breaker will be used to apply or remove power to the camera. If power is supplied to it, the camera will be in one of two modes: Booting Up or Powered On.

The power cables supplied by the installer must use wires that are sufficient size gauge (16 AWG recommended) for the supply voltage and length of the cable run. Always follow local building codes!

To satisfy FCC requirements, the supplied noise suppression ferrite must be installed on the camera system power cable unless power cables are enclosed in metal conduit. Refer to Figure 1-4.

Note that the heater power cable requires two-wire power. Do not connect to the power supply ground.

Ensure the camera is properly grounded. Typical to good grounding practices, the camera chassis ground should be provided using the lowest resistance path possible. FLIR requires using a grounding strap anchored to the grounding lug on the back plate of the camera housing and connected to the nearest earth-grounding point.

Note

The terminal blocks for power connections will accept a maximum 16 AWG wire size.
1.6.3 Video Connections

The analog video connections on the back of the camera are BNC connectors. The camera also provides an RCA video connector that can be used to temporarily monitor the video output.

The video cables used should be rated as RG59U or better to ensure a quality video signal.

Note

Insert the cable through the cable glands on the enclosure before terminating and connecting them. In general, the terminated connectors will not fit through the cable gland. If terminated, it is possible to make a clean and singular cut in the gland seal to install the cable into the gland seal.

1.6.4 Ethernet Connection

The cable gland seal is designed for use with shielded Ethernet cable.

Note

Insert the cable through the cable glands on the enclosure before terminating and connecting them. In general, the terminated connectors will not fit through the cable gland. If terminated, it is possible to make a clean and singular cut in the gland seal to install the cable into the gland seal.

1.6.5 Serial Connection

For serial communications, it is necessary to set the parameters such as the signaling standard (RS-232 or RS-422), baud rate, number of stop bits, parity and so on. It is also necessary to select the communication protocol used (either Pelco D or Bosch) and the camera address. By default, the serial interface uses Pelco D, RS-422 standard, 9600 baud rate, 8/1/none, and address 1.

Note

Typical Bosch systems operate using a biphase connection. FLIR cameras do not accept biphase signals directly. It may be necessary to install a biphase converter in order to use the Bosch protocol.

Connect the wires of the serial cable as show in Figure 1-4 on page 11. When using the RS-422 standard, ensure the transmit pair of the camera goes to the receive pair of the other device, and vice versa.

Note

The terminal blocks for serial connections will accept a maximum 20 AWG wire size.

Note

The serial communications parameters for the PT-Series HD camera are set or modified either via hardware DIP switch settings or via software, through a web browser interface. A single DIP switch (SW103-9), Software Override determines whether the configuration comes from the hardware DIP switches or the software settings.

Note

The DIP switches are only used to control serial communications parameters. Other settings, related to IP camera functions and so on, must be modified via software (using a web browser).
1.6.6 Serial Communications Settings - Hardware DIP Switches

The camera has two blocks of DIP switches that are used to configure the serial communications settings. One block of switches has 8 switches and is used to set the serial address (or ID) of the camera. The other block of switches has 10 switches and is used to set baud rate, hardware protocol (RS-232 or RS-422), serial protocol (Pelco D or Bosch), and Software Override.

The figure below shows the locations of dip switches SW102 and SW103.

![DIP Switches Configuration](image)

Figure 1-6: PT-Series HD Serial Communications Configuration

When the Software Override DIP switch is set to the Off position (as it is by default), all of the other DIP switches will be ignored, and configuration changes must be made through software. If the switch is set to the On position, all configuration settings related to serial communications are made with the DIP switches, and changes that are made via software (with a web browser) will be ignored.

Serial Address: Use the block of switches on the left (SW102) to set the serial address of the camera. The available range of values is from decimal 1 to 255. The dip switches are interpreted as a binary number, with switch 1 representing the least significant bit (the switches are in the reverse order of the bits). For convenience, a table of serial addresses and their binary equivalents is included at the end of the manual. Refer to **Serial Address: Decimal To Binary Conversion, pg. 45**

<table>
<thead>
<tr>
<th>ID</th>
<th>Sw 1 LSB</th>
<th>Sw 2</th>
<th>Sw 3</th>
<th>Sw 4</th>
<th>Sw 5</th>
<th>Sw 6</th>
<th>Sw 7</th>
<th>Sw 8 MSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>2</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>3</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>255</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

Table 1-2: Dip Switch Address/ID Settings—SW101
Other Serial Communication Parameters: The tables below defines the switch locations, bit numbering and on/off settings used in controlling the other serial communication parameters.

Table 1-3: Dip Switch Settings—SW103

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate:</td>
<td>Bit 1</td>
<td>Bit 2</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Camera Control Protocol:</td>
<td>Bit 3</td>
<td>Bit 4</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Serial Communication Standard:</td>
<td>Bit 5</td>
<td>Bit 6</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Software Override DIP Switch:</td>
<td>Bit 7</td>
<td>Bit 8</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Not Used

Software Override DIP Switch: This setting determines whether the system will use software settings for configuration or if the dip switch settings will override the software settings. Default is Off.

<table>
<thead>
<tr>
<th>Bit 9</th>
<th>Bit 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>X</td>
</tr>
<tr>
<td>Software select</td>
<td>Hardware select</td>
</tr>
</tbody>
</table>
1.6.7 Cable Gland Sealing

Proper installation of cable sealing glands and use of appropriate elastomer inserts is critical to long term reliability. Cables enter the camera mount enclosure through liquid-tight compression glands. Be sure to insert the cables through the cable glands on the enclosure before terminating and connecting them (the connectors will not fit through the cable gland). Leave the gland nuts loosened until all cable installation has been completed. Inspect and install gland fittings in the back cover with suitable leak sealant and tighten to ensure water tight fittings. Teflon tape or pipe sealant (for example DuPont RectorSeal T™) are suitable for this purpose.

Cable Glands and Spare Parts Kit

The kit contains the two 3/4” cable glands and gland seal plugs required for non-conduit installations.

The remaining parts included in the kit are:

- a spare ground wire
- a spare ground nut and lock washer
- two spare power terminal block plugs
- two spare serial port terminal block plugs
- four spare F-Series back cover screws
- four spare PT-Series back cover screws

Cable Gland Seal Inserts

Cables may be between 0.23” to 0.29” OD. Up to six cables may be installed. Plugs are required for the hole(s) not being used. The photograph at the right shows two power cables, an Ethernet cable, an analog video cable, and two gland seal plugs.

If non-standard cable diameters are used, it may be necessary to locate or fabricate the appropriate insert to fit the desired cable. FLIR Systems, Inc. does not provide cable gland inserts other than what is supplied with the system.
1.7 PT-Series HD Camera Specifications

<table>
<thead>
<tr>
<th>Thermal Camera</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Format</td>
<td>640 x 512 (17 µm pixel pitch)</td>
</tr>
<tr>
<td>Detector Type</td>
<td>Long-Life, uncooled VOx microbolometer</td>
</tr>
<tr>
<td>Spectral Range</td>
<td>7.5 to 13.5 µm</td>
</tr>
<tr>
<td>Effective Resolution</td>
<td>307,200 (NTSC), 327,680 (PAL)</td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>17 µm</td>
</tr>
<tr>
<td>Lens</td>
<td>Athermalized, focus-free</td>
</tr>
<tr>
<td>Optical Zoom</td>
<td>Continuous to 4x – PT-606Z HD only</td>
</tr>
<tr>
<td>E-Zoom</td>
<td>Continuous E-Zoom to 4x</td>
</tr>
<tr>
<td>Image Frequency</td>
<td>25 Hz / 30 Hz; 8.33 Hz video standard PAL/NTSC—switchable from Video web page.</td>
</tr>
</tbody>
</table>
| **Field Of View (Focal Length) for available 640 x 512 camera lens configurations.** | PT-606Z HD - 24° HFOV to 6° HFOV (26 mm to 105 mm zoom), f/1.6
PT-608 HD - 8.6° x 6.6° (75 mm), f/1.1
PT-612 HD - 12° x 10° (50 mm), f/1.2
PT-617 HD - 17° x 14° (35 mm), f/1.1
PT-625 HD - 25° x 18° (25 mm), f/1.1
PT-644 HD - 44° x 36° (13 mm), f/1.0 |

<table>
<thead>
<tr>
<th>Thermal Camera – PT-602CZ HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Format</td>
</tr>
<tr>
<td>Detector Type</td>
</tr>
<tr>
<td>Spectral Range</td>
</tr>
<tr>
<td>Thermal Sensitivity</td>
</tr>
<tr>
<td>Effective Resolution</td>
</tr>
</tbody>
</table>
| **Field Of View** | WFOV: 28° x 22.4° (PAL) 28° x 21° (NTSC)
NFOV: 2° x 1.6° (PAL) 2° x 1.5° (NTSC) |
| **Optical zoom** | Continuous to 14x |
| **E-Zoom** | Continuous E-Zoom to 4x |
| **Image Frequency** | 25 Hz / 30 Hz video, PAL/NTSC—switchable from Video web page. |

<table>
<thead>
<tr>
<th>Visible Camera Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector Type</td>
</tr>
<tr>
<td>Effective resolution</td>
</tr>
<tr>
<td>Field Of View</td>
</tr>
</tbody>
</table>
| **Lens** | 30x optical zoom, 12x digital zoom
4.3 mm (wide) to 129.0 mm (narrow), F1.6 to F4.7 |

<table>
<thead>
<tr>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Video</td>
</tr>
<tr>
<td>Video Streaming</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
</tr>
<tr>
<td>Network Interfaces</td>
</tr>
<tr>
<td>Serial</td>
</tr>
<tr>
<td>External Analytics Compatible</td>
</tr>
</tbody>
</table>
Pan/Tilt

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan Angle/Speed</td>
<td>Continuous 360°; 0.1° to 60°/sec</td>
</tr>
<tr>
<td>Tilt Angle/Speed</td>
<td>+90° to -90°; 0.1° to 30°/sec</td>
</tr>
<tr>
<td>Programmable presets</td>
<td>128</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>< 40 lb (18 kg)</td>
</tr>
<tr>
<td>Dimensions (L,W,H)</td>
<td>13.7" × 18.4" × 13" (348 mm x 467 mm x 330 mm)</td>
</tr>
</tbody>
</table>

Power

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>24 Vac (21-30 Vac); 24 Vdc (21-30 Vdc)</td>
</tr>
</tbody>
</table>
| Power Consumption^a | 24 Vac: 85 VA max w/o heaters; 215 VA with heaters
 | 24 Vdc: 65 W max w/o heaters; 195 W with heaters |

Environmental

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP rating (dust and water ingress)</td>
<td>IP66</td>
</tr>
</tbody>
</table>
| Operating temperature range | -50 °C to 70 °C (-58 °F to 158 °F) continuous
 | -40 °C to 70 °C (-40 °F to 158 °F) cold start |
| Storage Temperature range | -55 °C to 85 °C (-67 °F to 185 °F) |
| Humidity | 0-95% relative |
| Endurance | IEC 60068-2-64 and MIL-STD-810G, Method 514.6, Procedure 1b |
| Operational Mechanical Shock | IEC 60068-2-27, 10 g shock, 11 ms half-sine profile |
| De-Icing | MIL-STD-810G, Method 521.2; 6 mm ice, 120 min @ -10 °C |
 | FCC CFR Title 47, Part 15 Subpart B, Class A |

^a Power consumption is independent of the input voltage when the heater is off. The power drawn by the heaters increases with the input voltage to a maximum at 30 Volts.
2 Basic Operation and Configuration

This chapter provides basic information on how to operate the PT-Series HD camera. A bench test can be used to verify camera operation before the camera is configured for the local network. This chapter also provides general configuration information.

2.1 IP Camera, ONVIF Profile S Compliant

When the camera is connected to the network it functions as a server; it provides services such as camera control, video streaming, network communications, and geo-referencing capabilities. The communications protocol used is an open, standards-based protocol that allows the server to communicate with a video management client, such as FLIR Latitude or with a third-party VMS client, including systems that are compatible with ONVIF Profile S. These clients can be used to control the camera and stream video during day-to-day operations. Refer to the Manuals section of the FLIR Support web page (http://www.flir.com/security/display/?id=71083) for information on configuration of some specific VMS clients.

2.1.1 Serial and/or IP Communications

For a camera that is installed in a legacy-type CCTV network using analog video, the camera may commonly be controlled with serial communications. The serial cable from the camera will be connected to a keyboard/joystick device, or to a video switch, encoder, or DVR that has a serial communication port. In this case the installer may want to configure parameters such as the address of the camera, the baud rate, and so on. These parameters can be set through software using a web browser. The parameters can also be set using DIP switches when IP communications are not used.

2.1.2 Server Configuration

It may be necessary for the installer to make a limited number of configuration changes to the camera server, such as setting the IP communication parameters, setting new login passwords, as well as some scene specific parameters. For example, each camera comes from the factory with the same default IP address, so adding more than one camera to an IP network requires each camera to be configured with a different IP address. On the other hand, many of the configuration parameters will remain unchanged from the factory default settings.

2.2 Camera Bench Test

Since the camera offers both analog video and IP video, it is recommended that the installer test the camera using the same type of connections as the final installation. If using analog video and serial communications in the final installation, also test the IP communications when performing the bench test. If any image adjustments are necessary, they can be done using a web browser over the IP connection, and saved as power-on default settings.

When the camera is turned on, the Analog Visible Video temporarily shows the IP address of the camera web server.

PT-602CZ HD Only—The thermal imager is cooled by a integral Stirling cooler (also known as a cryocooler) which starts automatically when the camera is powered on. The cryocooler makes an audible noise when operating, and requires up to 8 minutes to cool the detector down to its operating temperature. When cooling down, the thermal video image shows a blue screen with the note: Unit cooling, kindly wait.
Test serial communications by connecting a serial device such as a keyboard and confirm the camera is responding to serial commands. It may be necessary to configure the serial device interface to operate with the camera.

Once the camera is connected to a network and powered on, set camera network parameters using the FLIR Discovery Network Assistant (DNA) software, perform a bench test by using a web browser to view the video and control the camera, or view video in the local Network Video Management System (for example, FLIR Latitude™). The FLIR Discovery Network Assistant (DNA) software is a free download from the http://www.flir.com/security/display/?id=73533 web page and does not require a license to use.

2.2.1 Set IP Address using the FLIR Discovery Network Assistant (DNA)

The PT-Series HD camera is shipped with Dynamic Host Configuration Protocol (DHCP) enabled to assign IP addresses. Assuming the existing network has a DHCP server, the camera will be assigned an appropriate IP address. If the network does not have a DHCP server, the PT-Series HD camera will default to 192.168.0.250. Configuring the camera for IP communications generally involves the following steps:

Step 1 Connect the Ethernet port of the camera to the existing IP camera network.

Step 2 Connect a PC or laptop to the same network.

Step 3 From the computer connected to the camera network, use the DNA utility to discover and display the camera’s current IP address.

 a Download the DNA utility (2.1.3.15 or later) from the FLIR Firmware & Software Downloads page at: http://www.flir.com/security/display/?id=73533.

 b Unzip the utility, then double-click to run the executable file (DNA.exe). All the units on the VLAN are discovered.

 c For additional instructions on using DNA, refer to the DNA User’s Manual available in the Help (헬프) link while the software is running.

Online manual
Select a filter
Right-click
Select Assign IP

Click to sort
Step 4 Select Assign IP to change the IP address from the default DHCP to a static IP.

Step 5 Double-click the camera in DNA’s Discovery List to open the camera’s web server Login page in Internet Explorer or point your web browser to the camera’s IP address.

Step 6 Using a web browser, configure the camera settings, such as camera date/time, and other parameters, so the camera is compatible with the existing network.

2.3 Log into the Camera Web Page

Use a web browser to connect to the camera’s web server using one of three User Names: user, expert, or admin (the default passwords are user, expert, and admin respectively). The user login can be used to do the initial bench test of the camera. The expert login may be used to make configuration changes such as setting the IP address and other server settings. The admin login has access to all configuration, setup, and maintenance settings. The login passwords should be changed (admin login required) to prevent unauthorized access. Two web sessions can be active at once. An inactive session will be logged out after 20 minutes.

For information on how to change the passwords, refer to Server > Security Options, pg. 35.

Open a web browser and enter the camera IP address. The login screen with a picture of the camera will appear. Enter user for the User Name and user for the Password, and click Log in.
2.3.1 Live Video Page

The Live Video page displays a live image from the camera on the left part of the screen. Along the top of the screen are some menu choices, including Live Video (the red text indicates it is selected), Help and Log out.

On the right side are some control buttons, and a virtual joystick (for pan/tilt capability).

In the lower right corner of the web page there is a frame rate selector. This selector allows the user to change the rate at which the frames are displayed in the browser from the default 8 fps up to 16 fps. This controls the frame rate of the user’s own web browser only, and does not affect the video streams to other users or to an NVR. If the live video is not displayed, refer to Troubleshooting Tips, pg. 43.

Help

The Help menu displays software version information. If it is necessary to contact FLIR Technical Support for assistance, it will be helpful to have the information from this page on hand. For information about the camera including hardware part numbers and serial numbers refer to the Maintenance > Product Info > Identification web page (requires Admin login).

Log out

Use this button to disconnect from the camera and stop the display of the video stream. If a web session is inactive for 20 minutes, it will be stopped and it will be necessary to log in again.

Toggle PC/Camera time

Use this button to display either the PC time or the camera time.
2.3.2 Camera Control and Status

In the lower left of the screen are two indicator lights: Control and Status. Initially the Control light is off, as in the image above, indicating the user is not able to control the camera immediately. When multiple users are connected to a camera, only one user at a time can issue commands to the camera. If another user has control of the camera, the Control light is yellow.

A user is able to request control of the camera by clicking on the yellow or black light, or simply by sending a command to the camera. After a short pause, the Control light should turn green. Be patient, there may be a slight delay between each command while the browser waits for a response from the camera.

If a command is sent to the camera when the user does not have control, the command will not be executed, and it is necessary to send the command again once the light is green.

2.3.3 Web Control Panel

The control buttons on the right side of the page can control the camera. When the mouse cursor is positioned over a button, a tool tip is displayed which explains the function of the button.

When the mouse is positioned over the video window, the video stream source is shown in the upper left corner of the video image and a snapshot button is shown in the upper right corner of the video image. The snapshot button will save an image as a .jpg file to the selected destination folder or as determined by the web browser.

This same web interface is used with various FLIR thermal cameras, some of which have different capabilities. As a result, different buttons in the control panel will appear for different FLIR cameras.

The functions of the buttons appearing for the PT-Series HD cameras are described below:

Zoom In/Zoom Out

These buttons zoom the active camera (IR or daylight). On cameras with zoom lenses, digital zoom or E-Zoom extends the ability to zoom in, but at the expense of resolution. Also, refer to “Sensor > Devices > IR > Zoom Slave” on page 37.
Basic Operation and Configuration

Toggle Video Source
This button causes the active video source to be switched between the thermal IR camera and the daylight camera. Refer to “Sensor > Devices > IR > Zoom Slave” on page 37.

Toggle Polarity—IR only
This button changes the way various objects are displayed in the image, for example, with hot objects displayed as white and cold objects as black, or vice versa.

Toggle Palette—IR only
This button causes the IR camera to cycle through different color palettes. Each of the palettes presents the IR image using a different color scheme. Use the Toggle Polarity button to invert the palette, for example, between white hot and black hot.

Perform IR NUC Calibration—IR only—not present for PT-602CZ HD
This button causes the camera to do a manual Non-Uniformity Correction (NUC) operation. The PT-Series HD camera, by default, does an automatic NUC calibration as required based on changes in temperature. The PT-602CZ HD camera (cooled) does not require a NUC operation.

Toggle Scene Preset—IR only
This button causes the IR camera to cycle through different image settings. The Scene Presets cause the image brightness and contrast to adjust. Depending on the time of day, weather, and other conditions, one Scene Preset may be preferable to the others.

Toggle Automatic Gain Control (AGC)
This button causes the camera to cycle through different AGC options that use a combination of settings to produce different configurations that could improve the video image for a given set of conditions.

Freeze Video—Visible only
This button stops the video on a single frame. Click again to start the video.

Autofocus
This button causes the DLTV camera to toggle the autofocus mode. Clicking the button a second time reinstates the autofocus mode and causes an autofocus operation. This button causes the IR camera with a zoom lens to perform an autofocus operation.

Function
When the Function button is selected, the keypad changes to a numeric keypad. A tool tip can be shown when a function has been assigned to a number. Use the back (←) arrow to return to the Control Panel.
2 Basic Operation and Configuration

Pan/Tilt Home

This button causes the camera to go to the Home position. To set a new Home position, hold the button for approximately 3 seconds.

Go to Preset

The PT-Series HD camera can have a set of predetermined pan/tilt locations, each of which is known as a preset. For example, a preset may be set for each of the locations where security surveillance is most needed, a gate, doorway, and other points of access.

When the Go to Preset button is selected, the keypad changes to a numeric keypad.

To cause the camera to go to a predefined location view (Preset) select a number.

Use the back (←) arrow to return to the Control Panel.

2.4 Camera Configuration

The following procedures describe how to do the most common camera configuration steps, such as setting the camera IP address and hostname and changing the user passwords. To make these changes, it is necessary to log in using the admin account.

Note

In most installations, the only camera settings needed are available from the Live Video page (using Scene Presets or Polarity). Use caution when modifying the camera settings described in this section. Some settings may adversely affect the thermal image over time or may completely disable the camera or the network interface.

2.4.1 Expert and Admin Accounts

When a user logs in as expert or admin, additional menus, Setup and Maintenance are available. The Setup menu is used to make advanced adjustments to the thermal camera, the daylight camera, and the pan/tilt platform.

The basic camera configuration steps are accessed through the Maintenance > Server menu, using the menus on the left side of the page. The LAN Settings, Services, and Security Options selections are described below (Maintenance Menu, pg. 32). The expert login has access to the Server pages. The admin login provides access to all configuration options. The login passwords should be changed (admin login required) to prevent unauthorized access.
2.4.2 Setup Menu

The **Setup** menu is used for GEO Settings, camera setup, and defining parameters for surveillance zones.

When configuration changes are made with the web browser, the settings are saved to a configuration file. It is a good idea to make a backup of the existing configuration file prior to making changes, and another backup once the changes are finalized. If necessary the camera can be restored to its original factory configuration or one of the saved configurations (refer to Files > Configuration, pg. 40).

It is necessary to have control of the camera to make Setup changes. Changes made through the Setup menu have an immediate effect (it is not necessary to stop and restart the server). To use these settings at power up, it is necessary to save the changes.

Adjustments to the IR settings should only be made by someone who has expertise with thermal cameras and a thorough understanding of how the various settings affect the image. In most installations, the only camera settings needed are available from the Web Control panel on the Live Video page (Scene Presets, Polarity, Palettes, and AGC). Haphazard changes can lead to image problems including a complete loss of video.
Video

By default, two video streams are enabled for each camera: Video 0 and Video 1 are sourced from the DLTV camera, Video 2 and Video 3 are sourced from the IR thermal imager. All video streams are available for viewing from a client program such as FLIR Latitude, a stand-alone video player, or a third-party VMS (including ONVIF systems).

To modify parameters that affect a particular IP Video stream from the camera, select the appropriate link (for example, Video - 0).

The default parameters provide high-quality full frame-rate video streams with reasonable bandwidth usage. In general, for most installations it will not be necessary to modify the default parameters. In some cases, such as when a video stream is sent over a wireless network, it may be useful to adjust the frame rate of the video stream to reduce the required bandwidth.
After making adjustments, scroll down to save the changes through power cycles.

The parameters in the Encoding section will have a significant impact on the quality and bandwidth requirements of the video stream. In general it is recommended that the default values are used initially, and then individual parameters can be modified and tested incrementally to determine if the bandwidth and quality requirements are met.

For the video streams, the Codec options are H.264 Main or MJPEG.

The Bit Rate parameter is only used when the Rate Control parameter is set to CBR (Constant Bit Rate). With the CBR setting, the system attempts to keep the video at or near the target bit rate.

The I-Frame Interval parameter controls the number of P-frames used between I-frames. I-frames are full frames of video and the P-frames contain the changes that occurred since the last I-frame. A smaller I-Frame Interval results in higher bandwidth (more full frames sent) and better video quality. A higher I-Frame Interval number means fewer I-frames are sent and therefore results in possibly lower bandwidth and possibly lower quality.

The Resolution parameter controls the video resolution and therefore can have a large impact on bandwidth usage. The higher the resolution, the larger the size of the frame and the higher the network bandwidth required. Table 2-1 provides the corresponding resolution for each setting.

<table>
<thead>
<tr>
<th>Video Stream</th>
<th>Image Resolution Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIDEO 0</td>
<td>1920 x 1080, 1280 x 720, 640 x 480</td>
</tr>
<tr>
<td>VIDEO 1</td>
<td>1920 x 1080, 1280 x 720, 720 x 480, 704 x 576, 640 x 480, 352 x 288, 320 x 240</td>
</tr>
<tr>
<td>VIDEO 2</td>
<td>640 x 512, 320 x 256</td>
</tr>
<tr>
<td>VIDEO 3</td>
<td>640 x 512, 640 x 480, 352 x 288, 320 x 256, 320 x 240</td>
</tr>
</tbody>
</table>

a. Factory default resolution is shown in bold type.

If the video will be viewed on its own and on a reasonably large screen, a large image size setting may look better. On the other hand, if the video is shown as a tile in a video wall, a smaller image size may look as good and consume less bandwidth.

The default RTP Settings for connecting to an IP video stream from the PT-Series HD are shown in the illustration. The RTP Port and the Stream Name are used when establishing a session from a client.

The connection string for each of the video streams are as follows:

- VIDEO 0 - rtsp://192.168.0.250:554/stream1/sensor1
- VIDEO 1 - rtsp://192.168.0.250:554/stream2/sensor1
- VIDEO 2 - rtsp://192.168.0.250:554/stream1/sensor2
- VIDEO 3 - rtsp://192.168.0.250:554/stream2/sensor2
The IR camera adjustments to the region of interest (ROI) determine what portion of the image is used by the Automatic Gain Control (AGC) algorithm. By default all of the pixels in the image are considered; in some cases it may provide an improved image if a portion of the image is excluded. For example, the sky is generally very cold, so if the ROI excludes the sky it may add more contrast to the rest of the image. A pull-down list offers some convenient options.

IR > AGC

The AGC parameters affect how the overall IR video image appears. Using the AGC button on the Live Video page (refer to Toggle Automatic Gain Control (AGC), pg. 24), toggle through five AGC algorithms. The default algorithms are suitable for most installations, but each selection allows a combination of further adjustments that may provide a more appealing image, depending on personal preferences. Be aware that the settings that are optimal at one time may be less optimal a short time later, since conditions such as weather and time of day affect the image and are constantly changing.

Experiment with different AGC parameters to find the settings that work best for the particular installation. Select **Save Settings** button at the bottom of the page to keep the settings after a power cycle or select the **Factory Defaults** button to return the settings to default values.

- **Brightness** (ITT Mean) setting determines the temperature that is at the middle of the 256 "shades of gray" produced by the AGC. Positive values allow more detail in hotter scenes, while negative values allow more detail in lower temperature scenes. Range is -4 to 4.
- **Contrast** (Max Gain) can be used to increase contrast, especially for scenes with little temperature variation (it may also increase noise due to increased gain). Range is 12 to 24.
- **Sharpness** (DDE Gain) is used to enhance image details and/or suppress fixed pattern noise. Positive values increase Sharpness, while negative values soften the image and filter fixed pattern noise. A setting of 0 is neutral and will not have any effect. Range is -10 to 40.
- **AGC Filter** determines how quickly a scene will adjust when a hot object appears (or disappears) within the AGC ROI. If set to a low value, when a hot object enters the ROI, the AGC will adjust more slowly to the hot object, resulting in a more gradual transition. Range is 1 to 32.
Pan and Tilt

The azimuth and elevation angles are measured in degrees. The elevation angle is measured from horizontal; negative values are down, positive values are up. The Azimuth angle is measured from the front of the pan/tilt unit; negative values are counter-clockwise, positive values are clockwise.

Surveillance > Scan List

To move the camera: enter coordinates, click Go to
To setup Presets: position camera, select Preset ID
Click Set
Surveillance > Auto Scan

Relative Auto Scan (Surveillance mode) will scan the scene starting with the current position of the camera. Absolute Auto Scan will scan the scene starting with the zero azimuth position of the camera. Both can be started and the parameters set in the web page, note also that Absolute Auto Scan can also be started as an option in the Startup mode when the camera boots. Refer to Sensor > Devices > Pan & Tilt, pg. 37.

To start Auto Scan: select width and speed, then select Start

Set Autoscan parameters: select speed, select limits, click Save
2.4.3 Maintenance Menu

When a user logs in as admin, a complete Maintenance menu is available. The basic camera configuration steps are accessed through the Maintenance menu, using the Server submenu on the left side of the page. The LAN Settings, Date and Time, Server Status, and Security Options selections are described below. Generally with these settings it is necessary to save the changes to make them effective, but it is not necessary to stop and restart the server.

Server > LAN Settings

If the IP address of the camera is changed, the PC may no longer be on the same network and therefore may not be able to access the camera until the IP address on the PC is changed also. For that reason, it may be preferable to change the IP address after making other configuration changes.

When the LAN settings are changed and the Save button is clicked, a pop-up message will appear to indicate the network interface should be restarted. Once all the changes have been made and saved, click on the Restart Network button at the bottom of the page.
Server > Services > Date and Time

The date, time, and time zone can be obtained from an NTP server, or can be entered manually. If the NTP mode is selected, the NTP server information can be entered. The NTP server address can be entered as a static address or can be obtained via DHCP.

Note

The server must be stopped before date and time settings can be changed.

Set the date and time parameters, then select the Save button at the bottom. After saving the settings, reboot the system. Refer to Server > Server Status, pg. 34.

If the Custom mode is selected, a pop-up window allows the information to be entered manually.
Server > Server Status

The Server Status page provides an indication of the current server status (either running or stopped) and buttons for starting or stopping the server and for rebooting the system. The Uptime section of the Server Status page shows how long the camera has been running, number of users, and the load on the camera processor. All values are updated only when the Server Status page is first accessed.

After making configuration changes, it is necessary to save the changes to the server (there is a Save button at the bottom of each configuration page). The configuration changes do not take effect immediately. Generally, it is also necessary to stop and restart the server for the changes to become effective. The server has a configuration that is active and running, and another configuration that is saved (and possibly different than the running configuration).

The message at the bottom of the page indicates the saved configuration is different than the active (running) configuration, and it is necessary to restart the server.

It may take up to 20 seconds or more to stop the server, especially when there are multiple video streams open. Be patient when stopping the server.

When the server is stopped and the page is refreshed, the status will show Server Stopped and the Start button will be enabled.

Click on the Start button to restart the server, and when the page refreshes, the status will again show Server Running. The Start button will be replaced by a Stop button when the startup procedure has completed.
Server > Security Options

Use the Security Options page to set and change passwords (requires the admin login). As an additional security measure, limit which computers have access to the web browser interface. Simply add a computer’s IP address and click Add. After all the allowed IP addresses are entered, select the Save button to save the changes.

Note

A VMS Remote to the camera, ONVIF or Nexus CGI, uses the same password as the web interface. Refer to Sensor > Communications > VMS Remote, pg. 36.

To maintain security of the system set new passwords for each of the three login accounts.

- **user**—The user account can only use the Live Video page and controls.
- **expert**—The expert account can use the Live Video page, the camera Setup page, and the Server pages on the Maintenance menu.
- **admin**—The admin account can use all pages and set passwords.
Sensor > Communications > Serial Remote

If the camera is used with a VMS that is compliant with ONVIF, the parameters can be adjusted (if needed) to work with the VMS. Refer to the VMS documentation to determine what parameter values are needed. By default, the camera is configured with a VMS Remote interface with ONVIF 2.0 parameters (Profile S).

Authentication when enabled uses the same passwords set from the Server Security Options page. Refer to Server > Security Options, pg. 35. Several types of third-party Video Management Systems (VMS) are supported by FLIR IP cameras. Because these systems tend to evolve and change over time, contact the local FLIR representative or FLIR Technical Support to resolve any difficulties or questions about using this feature.
Sensor > Devices > IR > Zoom Slave

The Zoom Slave function is set from the IR web page. To slave the IR camera to the DLTV zoom select the IR web page and scroll down to Zoom Slave.

When the IR camera zoom is slaved to the DLTV camera (Specific Camera), the cameras will only zoom when the DLTV camera is the active camera.

Sensor > Devices > Pan & Tilt

Scroll down to select an action the camera will perform at startup (power cycle or server reset).
Sensor > Modules > Video

By default, four video streams are enabled for the camera: Video 0, Video 1, Video 2, and Video 3. The streams are available for viewing from a client program such as FLIR Latitude, a stand-alone video player, or a third-party VMS including ONVIF systems. By default, Video 0 and Video 1 are from the visible camera, while Video 2 and Video 3 are from the IR sensor.

Caution!

Adjustments to these settings should only be made by someone trained with thermal cameras and a thorough understanding of how the various settings affect the image. Haphazard changes can lead to image problems including a complete loss of video.

To modify parameters that affect a particular IP Video stream from the camera, select the appropriate link at the top of the page (for example, Video 0).

The default RTP Settings for connecting to an IP video stream from the PT-Series HD are shown in the illustration. The RTP Port and the Stream Name are used when establishing a session from a client.

Given the camera IP address of 192.168.0.250, the complete connection string for each of the video streams are as follows:

VIDEO 0 - rtsp://192.168.0.250:554/stream1/sensor1
VIDEO 1 - rtsp://192.168.0.250:554/stream2/sensor1
VIDEO 2 - rtsp://192.168.0.250:554/stream1/sensor2
VIDEO 3 - rtsp://192.168.0.250:554/stream2/sensor2

In addition, to maintain compatibility with legacy systems the stream names are aliased as: ch0 = stream1/sensor1, ch1 = stream2/sensor1, ch2 = stream1/sensor2, and ch3 = stream2/sensor2.

The video streams can be accessed with the shortened strings, such as rtsp://192.168.0.250/ch0.
In some networks, the RTP/RTSP traffic is carried (tunneled) over Hypertext Transfer Protocol (HTTP) as that may allow the traffic to cross network boundaries and firewalls. While this method involves more overhead due to encapsulation, it may be necessary for clients to access the video streams when HTTP proxies are used.

By default, the video streams from the camera are sent using multicast packets. With Multicast enabled, video packets are shared by streaming clients, so additional clients do not cause bandwidth to increase as dramatically.

If more than one camera is providing multicast streams on the network, be sure to configure each stream with a unique multicast Destination Network IP address and Destination Port combination.

The time-to-live field controls the ability of IP packets to traverse network boundaries. A value of 1 restricts the stream to the same subnet. Greater values allow increasing access between networks.

The video streaming is done using a protocol generally referred to as Real-time Transport Protocol (RTP), but there are actually many protocols involved, including Real-Time Transport Control Protocol (RTCP) and Real Time Streaming Protocol (RTSP). In the background, a “negotiation” takes place to establish a session between the client (such as FLIR Latitude, a third party VMS, or video player) and the camera. The ports which form a session are negotiated using a protocol such as RTSP. A client typically requests a video stream using its preferred settings, and the camera can respond with its preferred settings. As a result, many of the details are established dynamically, which may run contrary to network security requirements.

The parameters in the Stream Settings section will have a significant impact on the quality and bandwidth requirements of the video stream. In general it is recommended that the default values be used initially, and then individual parameters can be modified and tested incrementally to determine if the bandwidth and quality requirements are met.

For video streams, the Codec options are H.264 and MJPEG.

The Bit Rate parameter is used with the CBR (Constant Bit Rate) setting to attempt to keep the resulting bit rate of the video at or near the target bit rate.

When the Rate Control parameter is set to VBR (Variable Bit Rate), the Bit Rate parameter is used as an upper limit bit rate and the system keeps the stream at or under the target bit rate.

The I-Frame Interval parameter controls the number of P-frames used between I-frames. I-frames are full frames of video and the P-frames contain the changes that occurred since the last I-frame. A smaller I-Frame Interval results in higher bandwidth (more full frames sent) and better video quality. A higher I-Frame Interval number means fewer I-frames are sent and therefore results in lower bandwidth and possibly lower quality.
Files > Firmware

For camera firmware updates, manually install a firmware update file by first stopping the camera server, browsing to select the update file on your computer, and selecting Upload. The firmware files will be uploaded and installed.

Files > Configuration

The Configuration page allows the Nexus Server configuration to be displayed or backed up locally (on the camera). The configuration file can also be downloaded to another computer for backup, or a new configuration file can be uploaded from a computer to the camera. Shown at the top of the page is the configuration script file in a scrollable window. This can be useful if help is ever needed from a support engineer.
In the Backup & Recovery section, click the Restore link associated with the factory.defaults configuration to restore the camera to its factory settings. This file can not be modified or deleted, so it is always available.

Use the Backup button to make a backup of the final settings. This will make a backup copy of the configuration file and store it locally on the camera.

In the Upload & Download section, the Download Configuration File link can be used to save a copy to a PC for safe keeping. A pop-up window will ask for a file name and destination folder.

The Upload button is used to transfer a configuration file from a PC to the camera.

Files > Log > Field Support Log

Scroll down and select the **Download** button under Field Support Log to download a zip file to the computer for field service evaluation.
2.5 Thermal Imaging Overview

PT-602CZ HD Only—When power is applied to the PT-602CZ HD camera, a compact integral Stirling cooler (also known as a cryocooler) starts automatically. The cryocooler makes an audible noise when it is operating, and requires up to 8 minutes to cool the thermal imager down to its operating temperature. When cooling down, the thermal video image shows a blue screen with the note: Unit cooling, kindly wait.

The thermal camera makes an image based on temperature differences. In the thermal image, by default the hottest item in the scene appears as white and the coldest item is black, and all other items are represented as a gray scale value between white and black.

It may take some time to get used to the thermal imagery from the camera, especially for someone who only has experience with normal daylight cameras. Having a basic understanding of the differences between thermal and daylight cameras can help with getting the best performance from the thermal camera.

Both thermal and daylight cameras have detectors (pixels) that detect energy. One difference between thermal and daylight cameras has to do with where the energy comes from to create an image. When viewing an image with an ordinary camera, there has to be some source of visible light (something hot, such as the sun or lights) that reflects off the objects in the scene to the camera. The same is true with human eyesight; the vast majority of what people see is based on reflected light energy.

On the other hand, the thermal camera detects energy that is directly radiated from objects in the scene. Most objects in typical surroundings are not hot enough to radiate visible light, but they easily radiate the type of infrared energy that the thermal camera can detect. Even very cold objects, like ice and snow, radiate this type of energy.

The camera is capable of sensing very small temperature differences, and produces a video image that typically has dramatic contrast in comparison to daylight cameras. This high contrast level from the thermal video enables intelligent video analytic software to perform more reliably.

The performance of the camera varies throughout the day. Right after sunset, objects warmed by the sun will appear warmest. Early in the morning, many of these objects will appear cooler than their surroundings, so be sure to look for subtle differences in the scene, as opposed to just hot targets.

While the imagery on the monitor may at first look similar to ordinary black and white daylight video, experience with the camera in varying conditions and seasons will lead to an appreciation of the characteristics that make thermal imaging distinct. A few tips on how to interpret some of the imagery may help to make the most of the system.

The camera senses small differences in apparent radiation from the objects in view, and displays them as either white (or lighter shades of gray) for warmer objects, and black (or darker shades of gray) for colder objects. This is why hot objects such as parts on an engines and exhaust pipes appear white, while the sky, puddles of water and other cold objects appear dark (or cool). Scenes with familiar objects will be easy to interpret with some experience. The camera automatically optimizes the image to provide the best contrast in most conditions.
2.6 Troubleshooting Tips

If help is needed during the installation process, contact a local FLIR representative. FLIR Systems, Inc. offers a selection of training courses to help get the best performance and value from the thermal imaging camera. Find out more at the FLIR training web page: http://www.flir.com/training.

No video: Check the video connection at the camera and at the display. If the connectors appear to be properly connected but the camera still does not produce an image, ensure that power has been properly applied to the camera and the circuit breaker is set properly. If a fuse was used, be sure the fuse is not blown. If the video cabling is suspected as a possible source of the problem, plug a monitor into the RCA connection inside the camera and determine if it produces an image.

If the camera still does not produce an image, contact the FLIR dealer or reseller who provided the camera, or contact FLIR directly (contact information is provided on the rear cover of this manual).

Performance varies with time of day: It may be possible to observe differences in the way the camera performs at different times of the day, due to the diurnal cycle of the sun. Recall that the camera produces an image based on temperature differences.

At certain times of the day, such as just before dawn, the objects in the image scene may all be roughly the same temperature, compared to other times of the day. Compare this to imagery right after sunset, when objects in the image may be radiating heat energy that has been absorbed during the day due to solar loading. Greater temperature differences in the scene generally will allow the camera to produce higher-contrast imagery.

Performance may also be affected when objects in the scene are wet rather than dry, such as on a foggy day or in the early morning when everything may be coated with dew. Under these conditions, it may be difficult for the camera to show the temperature the object itself, rather than of the water coating.

Unable To Communicate Over Ethernet: First check to ensure the physical connections are intact and that the camera is powered on and providing analog video to the monitor. When the camera is turned on, confirm the camera IP address is shown on the Analog Visible Video monitor after approximately 90 seconds.

Confirm that the IP address for the PC is on the same network as the camera.

By default the camera will broadcast a discovery packet two times per second. Use the FLIR Discovery Network Assistant (DNA): http://www.flir.com/security/display/?id=73533) or a packet sniffer utility such as Wireshark and confirm the packets are being received by the PC from the camera.

Determine if Windows Personal Firewall is blocking the packets. Turn off the firewall or add an exception for the client program. Typically when a program runs for the first time, a pop-up notification may ask for permission to communicate on the network. Select the check boxes (domain/private/public) that are appropriate for the network.

Unable to View Video Stream: If the video stream from the camera is not displayed in a client program, it could be that the packets are blocked by the firewall, or there could be a conflict with video codecs that are installed for other video programs.

When displaying video with FLIR Latitude or a VMS for the first time, the Windows Personal Firewall may ask for permission to allow the video player to communicate on the network. Select the check boxes (domain/private/public) that are appropriate for the network.
If necessary, test to make sure the video from the camera can be viewed by a generic video player such as VLC media player (http://www.videolan.org/vlc/). To view the video stream, specify RTSP port 554 and the appropriate stream name. For example:

In addition, to maintain compatibility with legacy systems the stream names are aliased as:
ch0 = stream1/sensor1, ch1 = stream2/sensor1, ch2 = stream1/sensor2, and ch3 = stream2/sensor2. The video streams can be accessed with the shortened strings, such as rtsp://192.168.0.250/ch0.

Refer to Sensor > Modules > Video, pg. 38).

Noisy image: A noisy image is usually attributed to a cable problem (too long or inferior quality) or the cable is picking up electromagnetic interference (EMI) from another device. Although coax cable has built-in losses, the longer the cable, or the smaller the wire gauge, the more severe the losses become; and the higher the signal frequency, the more pronounced the losses. Unfortunately this is one of the most common and unnecessary problems that plagues video systems in general.

Cable characteristics are determined by a number of factors (core material, dielectric material and shield construction, among others) and must be carefully matched to the specific application. Moreover, the transmission characteristics of the cable will be influenced by the physical environment through which the cable is run and the method of installation.

Check cable connector terminations. Inferior quality connections may use multiple adapters which can cause unacceptable noise. Use a high-quality video distribution amplifier when splitting the signal to multiple monitors.

Image too dark or too light: By default the PT-Series HD thermal camera uses an Automatic Gain Control (AGC) setting that has proven to be superior for most applications, and the camera will respond to varying conditions automatically. The installer should keep in mind that the sky is quite cold and can strongly affect the overall image. It may be possible to avoid a problem by slightly moving the camera up or down to include (or exclude) items with hot or cold temperatures that influence the overall image. For example, a very cold background (such as the sky) could cause the camera to use a wider temperature range than appropriate.

Eastern or Western Exposure: Once installed, the camera may point directly east or west, and this may cause the sun to be in the field of view during certain portions of the day. We do not recommend intentionally viewing the sun, but looking at the sun will not permanently damage the sensor. The thermal imaging camera often provides a considerable advantage over a visible camera in a back-lit situation. However, the sun may introduce image artifacts that eventually will be corrected but it may take some time to recover. The amount of time needed will depend on how long the camera was exposed to the sun. The longer the exposure, the longer the recovery time needed.
3 Serial Address: Decimal To Binary Conversion

Note, the order of the switches 1-8 is the reverse of the binary digits. For example, for address 1 the binary equivalent is 00000001 and the left-most switch (switch1) is on.

3.1 Address Conversion Table

<table>
<thead>
<tr>
<th>Address</th>
<th>Sw1</th>
<th>Sw 2</th>
<th>Sw 3</th>
<th>Sw4</th>
<th>Sw 5</th>
<th>Sw 6</th>
<th>Sw 7</th>
<th>Sw 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>255</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

The following table shows the binary equivalent for each decimal address between 1 and 255.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000001</td>
<td>65</td>
<td>01000001</td>
<td>129</td>
<td>10000001</td>
<td>193</td>
<td>11000001</td>
</tr>
<tr>
<td>2</td>
<td>00000010</td>
<td>66</td>
<td>01000010</td>
<td>130</td>
<td>10000010</td>
<td>194</td>
<td>11000010</td>
</tr>
<tr>
<td>3</td>
<td>00000011</td>
<td>67</td>
<td>01000011</td>
<td>131</td>
<td>10000011</td>
<td>195</td>
<td>11000011</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>255</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

[Table continues with entries for addresses 4 to 255]
<table>
<thead>
<tr>
<th>Serial Address</th>
<th>Decimal</th>
<th>Binary Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>00011011</td>
<td>91 01011011 155 10011011 219 11011011</td>
</tr>
<tr>
<td>28</td>
<td>00011100</td>
<td>92 01011100 156 10011100 220 11011100</td>
</tr>
<tr>
<td>29</td>
<td>00011101</td>
<td>93 01011101 157 10011101 221 11011101</td>
</tr>
<tr>
<td>30</td>
<td>00011110</td>
<td>94 01011110 158 10011110 222 11011110</td>
</tr>
<tr>
<td>31</td>
<td>00011111</td>
<td>95 01011111 159 10011111 223 11011111</td>
</tr>
<tr>
<td>32</td>
<td>00100000</td>
<td>96 01100000 160 10100000 224 11100000</td>
</tr>
<tr>
<td>33</td>
<td>00100001</td>
<td>97 01100001 161 10100001 225 11100001</td>
</tr>
<tr>
<td>34</td>
<td>00100010</td>
<td>98 01100010 162 10100010 226 11100010</td>
</tr>
<tr>
<td>35</td>
<td>00100011</td>
<td>99 01100011 163 10100011 227 11100011</td>
</tr>
<tr>
<td>36</td>
<td>00100100</td>
<td>100 01100100 164 10100100 228 11100100</td>
</tr>
<tr>
<td>37</td>
<td>00100101</td>
<td>101 01100101 165 10100101 229 11100101</td>
</tr>
<tr>
<td>38</td>
<td>00100110</td>
<td>102 01100110 166 10100110 230 11100110</td>
</tr>
<tr>
<td>39</td>
<td>00100111</td>
<td>103 01100111 167 10100111 231 11100111</td>
</tr>
<tr>
<td>40</td>
<td>00101000</td>
<td>104 01101000 168 10101000 232 11101000</td>
</tr>
<tr>
<td>41</td>
<td>00101001</td>
<td>105 01101001 169 10101001 233 11101001</td>
</tr>
<tr>
<td>42</td>
<td>00101010</td>
<td>106 01101010 170 10101010 234 11101010</td>
</tr>
<tr>
<td>43</td>
<td>00101011</td>
<td>107 01101011 171 10101011 235 11101011</td>
</tr>
<tr>
<td>44</td>
<td>00101100</td>
<td>108 01101100 172 10101100 236 11101100</td>
</tr>
<tr>
<td>45</td>
<td>00101101</td>
<td>109 01101101 173 10101101 237 11101101</td>
</tr>
<tr>
<td>46</td>
<td>00101110</td>
<td>110 01101110 174 10101110 238 11101110</td>
</tr>
<tr>
<td>47</td>
<td>00101111</td>
<td>111 01101111 175 10101111 239 11101111</td>
</tr>
<tr>
<td>48</td>
<td>00110000</td>
<td>112 01110000 176 10110000 240 11110000</td>
</tr>
<tr>
<td>49</td>
<td>00110001</td>
<td>113 01110001 177 10110001 241 11110001</td>
</tr>
<tr>
<td>50</td>
<td>00110010</td>
<td>114 01110010 178 10110010 242 11110010</td>
</tr>
<tr>
<td>51</td>
<td>00110011</td>
<td>115 01110011 179 10110011 243 11110011</td>
</tr>
<tr>
<td>52</td>
<td>00110100</td>
<td>116 01110100 180 10110100 244 11110100</td>
</tr>
<tr>
<td>53</td>
<td>00110101</td>
<td>117 01110101 181 10110101 245 11110101</td>
</tr>
<tr>
<td>54</td>
<td>00110110</td>
<td>118 01110110 182 10110110 246 11110110</td>
</tr>
<tr>
<td>55</td>
<td>00110111</td>
<td>119 01110111 183 10110111 247 11110111</td>
</tr>
<tr>
<td>56</td>
<td>00111000</td>
<td>120 01111000 184 10111000 248 11111000</td>
</tr>
<tr>
<td>57</td>
<td>00111001</td>
<td>121 01111001 185 10111001 249 11111001</td>
</tr>
<tr>
<td>58</td>
<td>00111010</td>
<td>122 01111010 186 10111010 250 11111010</td>
</tr>
<tr>
<td>59</td>
<td>00111011</td>
<td>123 01111011 187 10111011 251 11111011</td>
</tr>
<tr>
<td>60</td>
<td>00111100</td>
<td>124 01111100 188 10111100 252 11111100</td>
</tr>
<tr>
<td>61</td>
<td>00111101</td>
<td>125 01111101 189 10111101 253 11111101</td>
</tr>
<tr>
<td>62</td>
<td>00111110</td>
<td>126 01111110 190 10111110 254 11111110</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
<td>127 01111111 191 10111111 255 11111111</td>
</tr>
<tr>
<td>64</td>
<td>01000000</td>
<td>128 10000000 192 11000000</td>
</tr>
</tbody>
</table>